Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis.

Molecular Therapy 2017 September 7
Despite aggressive antibiotic therapy, bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associated with structured, antibiotic-tolerant bacterial aggregates known as biofilms. We have demonstrated the effects of non-bactericidal, low-dose nitric oxide (NO), a signaling molecule that induces biofilm dispersal, as a novel adjunctive therapy for P. aeruginosa biofilm infection in CF in an ex vivo model and a proof-of-concept double-blind clinical trial. Submicromolar NO concentrations alone caused disruption of biofilms within ex vivo CF sputum and a statistically significant decrease in ex vivo biofilm tolerance to tobramycin and tobramycin combined with ceftazidime. In the 12-patient randomized clinical trial, 10 ppm NO inhalation caused significant reduction in P. aeruginosa biofilm aggregates compared with placebo across 7 days of treatment. Our results suggest a benefit of using low-dose NO as adjunctive therapy to enhance the efficacy of antibiotics used to treat acute P. aeruginosa exacerbations in CF. Strategies to induce the disruption of biofilms have the potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app