Add like
Add dislike
Add to saved papers

A DNA Walker as a Fluorescence Signal Amplifier.

Nano Letters 2017 September 14
Sensing nucleic acids typically involves the recognition of a specific sequence and reporting by, for example, a fluorogenic reaction yielding one activated dye molecule per detected nucleic acid. Here, we show that after binding to a DNA origami track a bound DNA target (a "DNA walker") can release the fluorescence of many molecules by acting as the catalyst of an enzymatic nicking reaction. As the walking kinetics sensitively depends on the walker sequence, the resulting brightness distribution of DNA origamis is a sequence fingerprint with single-nucleotide sensitivity. Using Monte Carlo simulations, we rationalize that the random self-avoiding walk is mainly terminated when steps to nearest neighbors are exhausted. Finally, we demonstrate that the DNA walker is also active in a plasmonic hotspot for fluorescence enhancement, indicating the potential of combining different amplification mechanisms enabled by the modularity of DNA nanotechnology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app