Add like
Add dislike
Add to saved papers

Modulation of the activated protein C pathway in severe haemophilia A patients: The effects of thrombomodulin and a factor V-stabilizing fab.

INTRODUCTION: The thrombomodulin (TM)/activated protein C (APC) system is a key regulator of haemostasis, limiting amplification and propagation of the formed blood clot to the injury site. Dampening APC's inhibition of factor V (FV) and factor VIII (FVIII) may be a future strategy in developing next-generation therapeutic targets for haemophilia treatment.

AIMS: To determine ex vivo the respective concentration-dependent effects of TM and a FV-stabilizing Fab on the APC regulatory pathway in severe FVIII-deficient blood and plasma.

METHODS: Ten severe haemophilia A subjects and one healthy control were enrolled. Blood was spiked with TM (0, 1, 2.5, 5, 10, 20.0 nmol/L) and FV-stabilizing Fab (0, 3, 15, 65, 300 nmol/L). The respective effects were compared to FVIII concentrations of 3- and 10% using rotational thromboelastometry clotting time (CT) and thrombin generation analysis (TGA).

RESULTS: With 1 and 2.5 nmol/L TM, 5% FVIII resulted in CT similar to the absence of TM, suggesting it completely reversed the effect of APC. Increasing TM concentrations also reduced peak thrombin generation and ETP. The addition of 300 nmol/L FV-stabilizing Fab returned CT to nearly baseline, but for most subjects was less than the effects of 3- or 10% FVIII. The FV-stabilizing Fab produced similar or greater thrombin generation compared to samples with 3- or 10% FVIII.

CONCLUSIONS: The FV-stabilizing Fab resulted in enhanced CT and TGA parameters consistent with FVIII levels of 3- and 10%. Additional studies need to further characterize how modulating the APC pathway may prove beneficial in developing new haemophilia drug targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app