Add like
Add dislike
Add to saved papers

Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate.

Transparent, conductive, and superhydrophobic nanocomposite coatings were fabricated on the polyethylene terephthalate substrate by a spray method. Different concentrations of multi-walled carbon nanotubes (MWCNTs) entwined with SiO2 nanoparticles, which originated from the hydrolysis and condensation of tetraethyl orthosilicate, were sprayed to form MWCNTs/SiO2 nanocomposite coatings. The coatings were characterized by scanning electron microscopy, contact angle measurements, and other analytical techniques. The surface morphology, hydrophobicity, transparency, and conductivity of the nanocomposite coating were found to be strongly dependent on the MWCNT concentration. With increasing MWCNT concentration, the hydrophobicity increased first and then decreased, and the optical transmittance and sheet resistance decreased. The enhanced hydrophobicity was associated with the surface microstructure and chemical composition of the coating. The decreased hydrophobicity resulted mainly from the decrease in the trapped air between the water droplet and the nanocomposite coating. Owing to the hierarchically porous 3-dimensional microstructure and opportune fluorinated MWCNT content, the nanocomposite coating with 0.2wt% MWCNTs exhibited the best hydrophobicity with a contact angle of 156.7°, good transparency with 95.7% transmittance and relatively high conductivity with a sheet resistance of 3.2×104 Ωsq-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app