Add like
Add dislike
Add to saved papers

Interface Electrode Morphology Effect on Carrier Concentration and Trap Defect Density in an Organic Photovoltaic Device.

Formation of Schottky barrier contact (SBC) leads reconstruction of charges at the metal/semiconductor (MS) interface because of the wave function overlap between semiconductor and metal contact. Not only is the Schottky barrier contact formation a signature of the material's work function, but also it is sensitive to the interface trap states, the crystal orientation of the interacting materials, and other interface properties. In this work, the effect of aluminum cathode morphology on the polymer Schottky diode and bulk heterojunction (BHJ) photovoltaic device performance is studied. The electron collecting contacts in Schottky diode and BHJ device have been deposited using aluminum in pellet and nanoparticle forms. Devices fabricated by using Al nanoparticle showed improvement in dark as well as photocurrent density. Significant enhancement in JSC leads to overall improved power conversion efficiency. Enhanced performance in Schottky structured diode and OPV device have been correlated with electrode microstructure and its interface properties such as improved electrically active contact and enhanced charge transport. Electrical conductivity is discussed based on enhanced electrical coherence across organic semiconductor and electrode interface. Therefore, the contribution of electrical enhancement leads to improvement in short-circuit current density (JSC ) in BHJ solar cell which is due to reduced trap density. Further, PCE was correlated with the density of interface trap states studied by drive level capacitance profiling technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app