CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Prediction of Transporter-Mediated Drug-Drug Interactions for Baricitinib.

Baricitinib, an oral selective Janus kinase 1 and 2 inhibitor, undergoes active renal tubular secretion. Baricitinib was not predicted to inhibit hepatic and renal uptake and efflux drug transporters, based on the ratio of the unbound maximum eliminating-organ inlet concentration and the in vitro half-maximal inhibitory concentrations (IC50 ). In vitro, baricitinib was a substrate for organic anion transporter (OAT)3, multidrug and toxin extrusion protein (MATE)2-K, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). Probenecid, a strong OAT3 inhibitor, increased the area under the concentration-time curve from time zero to infinity (AUC[0-∞] ) of baricitinib by twofold and decreased renal clearance to 69% of control in healthy subjects. Physiologically based pharmacokinetic (PBPK) modeling reproduced the renal clearance of baricitinib and the inhibitory effect of probenecid using the in vitro IC50 value of 4.4 μM. Using ibuprofen and diclofenac in vitro IC50 values of 4.4 and 3.8 μM toward OAT3, 1.2 and 1.0 AUC(0-∞) ratios of baricitinib were predicted. These predictions suggest clinically relevant drug-drug interactions (DDIs) with ibuprofen and diclofenac are unlikely.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app