Add like
Add dislike
Add to saved papers

Black TiO 2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer.

Nanoscale 2017 August 11
TiO2 nanomaterials have been widely used for anticancer drug carriers and UV/980 nm NIR triggered cancer synergistic platforms. However, traditional pure TiO2 nanocarriers encounter some serious drawbacks, such as low drug loading ability, limited tissue penetration of UV light, and heating effect of 980 nm NIR on normal tissue, which obstruct their further application in cancer treatment. To overcome those challenges, novel mesoporous silica (mSiO2 ) coated black TiO2 core-shell nanocomposites are designed and constructed as doxorubicin carriers for 808 nm NIR triggered thermal imaging guided photothermal therapy combined chemotherapy of breast cancer. Properties of the nanocomposites such as micro-morphology, size, drug loading ability and release, targeting performance, and therapy efficiency in vitro and in vivo were evaluated. The results indicated the core-shell nanocomposites with dramatically increased loading ability were pH-responsive/NIR-accelerated doxorubicin release nanocarriers and showed synergistic breast cancer treatment in vitro and in vivo. This study verifies that the newly prepared mSiO2 coated black TiO2 core-shell nanocarriers can overcome the limitations of traditional TiO2 nanocarriers and thus improve and broaden usage of TiO2 nanoparticles in nanomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app