JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

3D-printing a 'family' of biomimetic models to explain armored grasping in syngnathid fishes.

Seahorses and pipehorses evolved at least two independent strategies for tail grasping, despite being armored with a heavy body plating. To help explain mechanical trade-offs associated with the different designs, we created a 'family' of 3D-printed models that mimic variations in the presence and size of their armored plates. We measured the performance of the biomimetic proxies across several mechanical metrics, representative of their protective and prehensile capacities. Our results show that the models mimicking the tails of seahorses are the best all-around performers, while those of the distal-most, prehensile region of pipehorses are more flexible, but less protected. The comparison also reveals that different adaptive strategies provide different task-specific performance advantages, which could be leveraged for the design of armored manipulators or other bio-inspired technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app