JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Giant Magnetoresistive Biosensor Array for Detecting Magnetorelaxation.

In this paper, a time-domain magnetorelaxometry biosensing scheme is presented using giant magnetoresistive (GMR) sensors to measure the fast relaxation response of superparamagnetic magnetic nanoparticles (MNPs) in a pulsed magnetic field. The system consists of an 8 × 10 GMR sensor array, a Helmholtz coil, an electromagnet driver, and an integrator-based analog front-end needed to capture the fast relaxation dynamics of MNPs. A custom designed electromagnet driver and Helmholtz coil improve the switch-off speed to >5 Oe/μs, limiting the dead zone time to <10 μs, and thus enables the system to monitor fast relaxation processes of 30 nm MNPs. A magnetic correlated double sampling technique is proposed to reduce sensor-to-sensor variation by 99.98% while also reducing temperature drift, circuit offset, and nonlinearity below the noise level. An optimum integration time is calculated and experimentally verified to maximize the SNR. Experiments with dried MNPs have shown successful relaxation detection, and immunoassay experiments have demonstrated their binding kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app