Journal Article
Review
Add like
Add dislike
Add to saved papers

Substrate specificity in the context of molecular chaperones.

IUBMB Life 2017 September
Molecular chaperones are one of the key players in protein biology and as such their structure and mechanism of action have been extensively studied. However the substrate specificity of molecular chaperones has not been well investigated. This review aims to summarize what is known about the substrate specificity and substrate recognition motifs of chaperones so as to better understand what substrate specificity means in the context of molecular chaperones. Available literature shows that the majority of chaperones have broad substrate range and recognize non-native conformations of proteins depending on recognition of hydrophobic and/or charged patches. Based on these recognition motifs chaperones can select for early, mid or late folding intermediates. Another major contributor to chaperone specificity are the co-chaperones they interact with as well as the sub-cellular location they are expressed in and the inducability of their expression. Some chaperones which have only one or a few known substrates are reported. In their case the mode of recognition seems to be specific structural complementarity between chaperone and substrate. It can be concluded that the vast majority of chaperones do not show a high degree of specificity but recognize elements that signal non-native protein conformation and their substrate range is modulated by the context they function in. However a few chaperones are known that display exquisite specificity of their substrate e.g. mammalian heat shock protein 47 collagen interaction. © 2017 IUBMB Life, 69(9):647-659, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app