Add like
Add dislike
Add to saved papers

Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.

Scientific Reports 2017 July 27
Conventional functional connectivity (FC), referred to as low-order FC, estimates temporal correlation of the resting-state functional magnetic resonance imaging (rs-fMRI) time series between any pair of brain regions, simply ignoring the potentially high-level relationship among these brain regions. A high-order FC based on "correlation's correlation" has emerged as a new approach for abnormality detection of brain disease. However, separate construction of the low- and high-order FC networks overlooks information exchange between the two FC levels. Such a higher-level relationship could be more important for brain diseases study. In this paper, we propose a novel framework, namely "hybrid high-order FC networks" by exploiting the higher-level dynamic interaction among brain regions for early mild cognitive impairment (eMCI) diagnosis. For each sliding window-based rs-fMRI sub-series, we construct a whole-brain associated high-order network, by estimating the correlations between the topographical information of the high-order FC sub-network from one brain region and that of the low-order FC sub-network from another brain region. With multi-kernel learning, complementary features from multiple time-varying FC networks constructed at different levels are fused for eMCI classification. Compared with other state-of-the-art methods, the proposed framework achieves superior diagnosis accuracy, and hence could be promising for understanding pathological changes of brain connectome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app