Add like
Add dislike
Add to saved papers

Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway.

Chemosphere 2017 October
Bisphenol A is a chemical with hazardous health effects that is largely used in the manufacture of extensively used products including adhesives, plastics, powder paints, thermal paper and paper coatings, and epoxy resin, and is reported to exist in nature in an accumulative manner. In this study, both pristine and boron-doped multiwalled carbon nanotubes (MWNTs) were employed as filtration and electrochemical filtration materials, resulting in a significant removal of bisphenol A with identical performance for both MWNTs types. It was shown that the presence of salt is not critical for the greatest contaminant removal efficiency, likely due to the vital role of other electroactive species (e.g. reactive oxygen species). Near complete removal of 1 mg L(-1) bisphenol A at 2 and 3 V of applied DC potentials was achieved, indicating that the electrochemical filtration process is voltage dependent at both 2 and 3 V. Increasing the residence time by 7.4 fold (from 2.0 to 14.9 s) resulted in a significant removal of bisphenol A and its toxic byproducts, up to 424 min of electrochemical filtration time at 3 V of applied potential. Based on these results, electrochemical filtration using MWNTs is considered a promising technology for the removal of the accumulative bisphenol A and the reduction of its hazardous effects in waters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app