JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment.

Epigenetic influences mediating brain iron deposition, oxidative mitochondrial injury, and macroautophagy in Parkinson disease and related conditions remain enigmatic. Here, we show that selective overexpression of the stress protein, heme oxygenase-1 (HO-1) in astrocytes of GFAP.HMOX1 transgenic mice between 8.5 and 19 months of age results in nigrostriatal hypodopaminergia associated with locomotor incoordination and stereotypy; downregulation of tyrosine hydroxylase, DAT, LMX1B, Nurr1, Pitx3 and DJ-1 mRNA and/or protein; overproduction of α-synuclein and ubiquitin; oxidative stress; basal ganglia siderosis; mitochondrial damage/mitophagy; and augmented GABAergic systems (increased GABA, GAD67 and reelin). The neurophenotype of these GFAP.HMOX18.5-19m mice is highly consistent with parkinsonism and differs dramatically from the schizophrenia-like features previously documented in younger GFAP.HMOX10-12m mice. Common stressors may elicit either early-onset developmental (schizophrenia) or later-life degenerative (PD) brain disorders depending on whether the glial HO-1 response is engaged prior to or following the maturation of dopaminergic circuitry. Curtailment of glial HO-1 transduction at strategic points of the life course may confer neuroprotection in human degenerative and developmental central nervous system disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app