Add like
Add dislike
Add to saved papers

TAC-302 promotes neurite outgrowth of isolated peripheral neurons and prevents bladder denervation related bladder dysfunctions following bladder outlet obstruction in rats.

AIMS: To evaluate the ability of TAC-302, a cyclohexenoic fatty alcohol derivative, to enhance neurite outgrowth in cultured rat dorsal root ganglion (DRG) neurons, and the preventive effects of TAC-302 on bladder denervation-related storage and voiding dysfunctions in rats with bladder outlet obstruction (BOO).

METHODS: Rat DRG neurons were cultured in the presence of TAC-302. Cell numbers and neurite lengths were quantified after a 24 h culture. BOO was achieved by partial ligature of the proximal urethra in female rats. BOO rats were divided into three groups and orally treated with vehicle of 3 or 30 mg/kg TAC-302 twice a day for 4 weeks. Cystometry was performed under conscious conditions. Immunohistochemical staining using anti-PGP9.5 of the bladder muscle layer was performed, and the innervation area was scored.

RESULTS: TAC-302 significantly and dose-dependently increased neurite outgrowth in cultured DRG neurons. BOO rats showed a decreased innervation area in the urinary bladder compared to sham-operated rats. BOO-induced denervation of the urinary bladder was partially prevented by oral treatment with TAC-302. TAC-302 significantly reduced the frequency of non-voiding contraction (NVC) and residual urine volume (RUV) compared with the BOO vehicle group (P < 0.05). The innervation area score exhibited significant negative correlations with NVC and RUV, indicating that they increased according to the progression of denervation.

CONCLUSIONS: Our data indicate that TAC-302 promotes neurite outgrowth in vitro. In addition, TAC-302 prevents BOO-induced bladder dysfunction in rats, and has a protective effect on bladder denervation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app