Add like
Add dislike
Add to saved papers

Spin dependent interactions catalyse the oxygen electrochemistry.

The technological interest of oxygen reduction and evolution reactions, ORR and OER, for the clean use and storage of energy has resulted in the discovery of multiple catalysts; and the physical and catalytic properties of the most active compositions are only comprehensible with the consideration of magnetic interactions. Spin dependent potentials via exchange interactions, spin-orbit coupling or through magneto-electric effects catalyse the oxygen electrochemistry. The best catalysts show metal sites with localized spins and electron delocalization; a correlation exists between the rate constant for charge transfer reactions and spin-dependent electron mobility. Since during the OER and ORR the number of unpaired electrons is not conserved, magnetic potentials in optimum catalysts act as selective gates to enhance the transport of local spin currents. Overall magnetic potentials can reduce the bonding properties of the, donor or acceptor, orbitals in the catalyst, and electrons more easily transfer over the conduction band. The influence of spin dependent forces is generally applicable to oxygen catalysis, and supplements the physical interactions relevant for inorganic or organic, electro or photo, artificial or natural processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app