JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Determination of Sialic Acids in Liver and Milk Samples of Wild-type and CMAH Knock-out Mice.

CMAH (cytidine monophosphate-N-acetylneuraminic acid hydroxylase) is responsible for the oxidation of cytidine monophosphate-N-acetylneuraminic acids in mammals. However, humans cannot oxidize cytidine monophosphate-N-acetylneuraminic acid to cytidine monophosphate-N-glycolylneuraminic acid due to a primary exon deletion of the CMAH gene. To understand the effects and implications of the lack of CMAH activity in more detail, a Cmah knock-out model in mice is of keen interest in basic and applied research. The analysis method to determine the phenotype of this mouse model is herein described in detail, and is based on the detection of both N-acetylneuraminic acid and N-glycolylenuraminic acid in the liver and milk of wild-type and Cmah knock-out mice. Endogenous sialic acids are released and derivatized with o-phenylenediamine to generate fluorogenic derivatives, which can be subsequently analyzed by HPLC. The presented protocol can be also applied for the analysis of milk and tissue samples from various other origins, and may be of use to investigate the nutritional and health effects of N-glycolylneuraminic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app