Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients.

Oncogene 2017 November 17
Tyrosine kinase inhibitor (TKI)-sensitive and TKI-resistant mutations of epidermal growth factor receptor (EGFR) are associated with lung adenocarcinoma. EGFR mutants were previously shown to exhibit ligand-independent activation. We have previously demonstrated that pulmonary surfactant protein D (SP-D, SFTPD) suppressed wild-type EGFR signaling by blocking ligand binding to EGFR. We herein demonstrate that SFTPD downregulates ligand-independent signaling in cells harboring EGFR mutations such as TKI-sensitive exon 19 deletion (Ex19del) and L858R mutation as well as TKI-resistant T790M mutation, subsequently suppressing cellular growth and motility. Lectin blotting and ligand blotting in lung cancer cell lines suggested that EGFR mutants express oligomannose-type N-glycans and interact with SFTPD directly. Cross-linking assay indicated that SFTPD inhibits ligand-independent dimerization of EGFR mutants. We also demonstrated that SFTPD reduced dimerization-independent phosphorylation of Ex19del and T790M EGFR mutants using point mutations that disrupted the asymmetric dimer interface. It was confirmed that SFTPD augmented the viability-suppressing effects of EGFR-TKIs. Furthermore, retrospective analysis of 121 patients with lung adenocarcinoma to examine associations between serum SFTPD levels and clinical outcome indicated that in TKI-treated patients with lung cancer harboring EGFR mutations, including Ex19del or L858R, high serum SFTPD levels correlated with a lower number of distant metastases and prolonged overall survival and progression-free survival. These findings suggest that SFTPD downregulates both TKI-sensitive and -resistant EGFR mutant signaling, and SFTPD level is correlated with clinical outcome. These findings illustrate the use of serum SFTPD level as a potential marker to estimate the efficacy of EGFR-TKIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app