Add like
Add dislike
Add to saved papers

Removing Cross-Linked Telopeptides Enhances the Production of Low-Molecular-Weight Collagen Peptides from Spent Hens.

The low-molecular-weight (LMW) peptides derived from collagen have shown a potential for various nutritional and pharmaceutical applications. However, production of LMW peptides from vertebrate collagen remains a challenge. Herein, we report a new method to produce LMW collagen peptides using pepsin pretreatment that removed cross-linked telopeptides in collagen molecules. After the pretreatment, the proportion of LMW collagen peptides (<1.4 kDa) that were obtained from pepsin-soluble collagen increased to 32.59% compared to heat-soluble collagen peptides (16.10%). Fourier transform infrared spectroscopy results indicated that telopeptide cleavage retained the triple-helical conformation of collagen. Liquid chromatography-tandem mass spectrometry analysis suggested that Gly-X-Y (X is often proline, while Y is either hydroxyproline or hydroxylysine) repeats were not the main factors that hindered the enzymatic hydrolysis of collagen molecules. However, cross-link quantification demonstrated that trivalent cross-links that included pyridinolines and pyrroles were the primary obstacles to producing small peptides from collagen of spent hens. This study demonstrated for the first time that removing cross-linked telopeptides could enhance the production of LMW peptides from spent hen collagen, which is also of interest to manufacturers who produce LMW collagen peptides from other vertebrate animals, such as bovids and porcids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app