Add like
Add dislike
Add to saved papers

Realisation of topological zero-energy mode in bilayer graphene in zero magnetic field.

Scientific Reports 2017 July 26
Bilayer graphene (BLG) gapped by a vertical electric field represents a valley-symmetry-protected topological insulating state. Emergence of a new topological zero-energy mode has been proposed in BLG at a boundary between regions of inverted band gaps induced by two oppositely polarized vertical electric fields. However, its realisation has been challenged by the enormous difficulty in arranging two pairs of accurately aligned split gates on the top and bottom surfaces of clean BLG. Here we report realisation of the topological zero-energy mode in ballistic BLG, with zero-bias differential conductance close to the ideal value of 4 e (2)/h (e is the electron charge and h is Planck's constant) along a boundary channel between a pair of gate-defined inverted band gaps. This constitutes the bona fide electrical-gate-tuned generation of a valley-symmetry-protected topological boundary conducting channel in BLG in zero magnetic field, which is essential to valleytronics applications of BLG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app