Add like
Add dislike
Add to saved papers

First report of blaOXA-181-mediated carbapenem resistance in Aeromonas caviae in association with pKP3-A: Threat for rapid dissemination.

OBJECTIVES: Carbapenemase-producing Aeromonas spp. are of great concern in healthcare settings and are also known to acquire clinically relevant resistance genes. In this study, carbapenem-non-susceptible Aeromonas isolates were characterised for their molecular mechanisms of resistance.

METHODS: Among 180 Aeromonas isolates, 10 carbapenem-non-susceptible isolates were selected based on their antimicrobial susceptibility profile. Carbapenemase production was investigated by the CarbaNP test. ESBL-, AmpC- and carbapenemase-encoding genes were screened by PCR. Isolates VBF557 and VBF856 with high MICs for imipenem were selected for whole-genome sequencing (WGS). Conjugation experiments were performed to determine the transmissibility of resistance.

RESULTS: WGS remarkably revealed the presence of class D β-lactamases (AmpS/AmpH), class C β-lactamases and class B2 metallo-β-lactamase (cphA3) in VBF557. In contrast, VBF856 had multiple resistance genes coding for aminoglycoside, sulphonamide, carbapenem (blaOXA-181 class D β-lactamase), macrolide, fluoroquinolone, rifampicin, phenicol, tetracycline and trimethoprim resistance. This is the first global report of blaOXA-181 in Aeromonas spp. Interestingly, blaOXA-181 was identified in association with transposon Tn2013 in plasmid pKP3-A. Additionally, an IncQ2 plasmid with qnrS2 was identified. Among the tested isolates, VBF1116 and VBF888 possessed blaNDM and blaVEB, respectively, by PCR. None of the other isolates harboured any tested β-lactamase genes. The resistance gene was transmissible in the presence of imipenem.

CONCLUSIONS: Presence of such resistance genes in plasmids further adds complexity for control of spread of carbapenem resistance. This study reveals the emergence of carbapenem resistance among Aeromonas spp. and the importance of mobile genetic elements such as plasmids in interchanging resistance determinants between species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app