Add like
Add dislike
Add to saved papers

Disturbance induced dynamics of a tritrophic novel ecosystem.

Novel ecosystems formed by invasive plants provide a good opportunity to get insight into early dynamics and pattern formation of these ecosystems. The invasive black locust as host plant, Bruchophagus robiniae as host-specific seed predator and its parasitoids were the components of the studied tritrophic system. To investigate disturbance-driven dynamics of this system we created seed-vacated host plant patches in a field experiment. We removed all pods from selected patches of black locust resulting in an induced local extinction of seed predators and their parasitoids. We hypothesized that disturbance enhances top-down control by parasitoids; this enhanced top-down control decreases seed predation, facilitating the host plant's spread. We found that disturbance modified only parasitism after controlling with year effect: in vacated patches median parasitism was higher than in control patches. Seed predation exceeded its initial level in vacated patches in the third year after the disturbance, but in the fourth year it dropped again presumably due to the strong top-down control. Our findings also suggested that the seed predator was also affected by the bottom-up control of its host plant's density. We found that in the studied new ecosystem the top-down control was strengthened by the disturbance. Since the host plant of the tritrophic system is an invasive species, partial habitat disturbance of such species may increase the severity of parasitoid top-down control, which may reduce seed predation by the herbivores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app