Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

N-Terminal Acetylation Preserves α-Synuclein from Oligomerization by Blocking Intermolecular Hydrogen Bonds.

The abnormal aggregation of α-synuclein (α-Syn) is closely associated with Parkinson's disease. Different post-translational modifications of α-Syn have been identified and contribute distinctly in α-Syn aggregation and cytotoxicity. Recently, α-Syn was reported to be N-terminally acetylated in cells, yet the functional implication of this modification, especially in α-Syn oligomerization, remains unclear. By using a solid-state nanopore system, we found that N-terminal acetylation can significantly decrease α-Syn oligomerization. Replica-exchange molecular dynamics simulations further revealed that addition of an acetyl group at the N-terminus disrupts intermolecular hydrogen bonds, which slows down the initial α-Syn oligomerization. Our finding highlights the essential role of N-terminal acetylation of α-Syn in preserving its native conformation against pathological aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app