Add like
Add dislike
Add to saved papers

Synthesis of a Doubly Boron-Doped Perylene through NHC-Borenium Hydroboration/C-H Borylation/Dehydrogenation.

Angewandte Chemie 2017 September 19
Reaction of an N-heterocyclic carbene (NHC)-borenium ion with 9,10-distyrylanthracene forms four B-C bonds through two selective, tandem hydroboration-electrophilic C-H borylations to yield an isolable, crystallographically characterizable polycyclic diborenium ion as its [NTf2 ](-) salt (1). Dehydrogenation of 1 with TEMPO radical followed by acidic workup yields a 3,9-diboraperylene as its corresponding borinic acid (2). This sequence can be performed in one pot to allow the facile, metal-free conversion of an alkene into a small molecule containing a boron-doped graphene substructure. Doubly boron-doped perylene 2 exhibits visible range absorbance and fluorescence in chloroform solution (Φ=0.63) and undergoes two reversible one-electron reductions at moderate potentials of -1.30 and -1.64 eV vs. ferrocenium/ferrocene in DMSO. Despite sterically accessible boron centers and facile electrochemical reductions, compound 2 is air-, moisture-, and silica gel-stable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app