Add like
Add dislike
Add to saved papers

Phytochemical and Bioactive Potential of in vivo and in vitro Grown Plants of Centaurea ragusina L. - Detection of DNA/RNA Active Compounds in Plant Extracts via Thermal Denaturation and Circular Dichroism.

INTRODUCTION: The phytochemical composition and biological activity of non-volatile components of Centaurea ragusina L. has not been studied previously.

OBJECTIVES: Our aim was to evaluate the phytochemical and bioactive potential (including interactions with polynucleotides) of C. ragusina L. depending on the origin of plant material (in vivo - leaves from natural habitats, ex vitro - leaves from plants acclimated from culture media, in vitro - leaves and calli from plants grown in culture media) and polarity of solvents used in extract preparation (80 and 96% ethanol and water combinations or single solvents).

METHODOLOGY: The polyphenol composition was determined by spectrophotometric and HPLC analysis. Biological activity of extracts was evaluated by following methods: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods for antioxidative activity, 2,3,5-triphenyl tetrazolium chloride (TTC) microdilution method for antibacterial activity, crystal-violet test for cytotoxic activity and thermal denaturation (TD) and circular dichroism (CD) for DNA/RNA interactions.

RESULTS: Conditions for the most efficient polyphenol extraction were determined: the 80% ethanol/water solvent system was the most suitable for callus and leaf ex vitro samples and 80 or 96% ethanol for leaf in vivo samples. Significantly higher levels of chlorogenic acid and naringenin were detected in callus tissue than in vivo plant. Ethanolic extracts exhibited the significant antibacterial activity against Staphylococcus aureus ATCC 25923. DNA/RNA active compounds in plant extracts were detected by TD and CD methods.

CONCLUSIONS: Callus tissue and ex vitro leaves represent a valuable source of polyphenols as in vivo leaves. TD and CD can be applied for detection of DNA/RNA active compounds in extracts from natural resources. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app