Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EBI2 contributes to the induction of thymic central tolerance in mice by promoting rapid motility of medullary thymocytes.

Maturing thymocytes enter the thymic medulla, where they encounter numerous self-antigens presented by antigen presenting cells (APCs). Those thymocytes that are strongly self-reactive undergo either negative selection or diversion into the regulatory T-cell lineage. Although the majority of the proteome is expressed in the medulla, many self-antigens are expressed by only a minor fraction of medullary APCs; thus, thymocytes must efficiently enter the medulla and scan APCs to ensure central tolerance. Chemokine receptors promote lymphocyte migration, organization within tissues, and interactions with APCs in lymphoid organs. The chemokine receptor EBI2 governs localization of T cells, B cells, and dendritic cells (DCs) during immune responses in secondary lymphoid organs. However, the role of EBI2 in thymocyte development has not been elucidated. Here, we demonstrate that EBI2 is expressed by murine CD4+ single positive (CD4SP) thymocytes and thymic DCs. EBI2 deficiency alters the TCR repertoire, but does not grossly impact thymocyte cellularity or subset distribution. EBI2 deficiency also impairs negative selection of OT-II TCR transgenic thymocytes responding to an endogenous self-antigen. Two-photon imaging revealed that EBI2 deficiency results in reduced migration and impaired medullary accumulation of CD4SP thymocytes. These data identify a role for EBI2 in promoting efficient thymic central tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app