Add like
Add dislike
Add to saved papers

An information theoretic framework reveals a tunable allosteric network in group II chaperonins.

ATP-dependent allosteric regulation of the ring-shaped group II chaperonins remains ill defined, in part because their complex oligomeric topology has limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered the prediction of allosteric networks using mathematical covariation approaches. Here, we develop an information theoretic strategy that is robust to residue conservation and apply it to group II chaperonins. We identify a contiguous network of covarying residues that connects all nucleotide-binding pockets within each chaperonin ring. An interfacial residue between the networks of neighboring subunits controls positive cooperativity by communicating nucleotide occupancy within each ring. Strikingly, chaperonin allostery is tunable through single mutations at this position. Naturally occurring variants at this position that double the extent of positive cooperativity are less prevalent in nature. We propose that being less cooperative than attainable allows chaperonins to support robust folding over a wider range of metabolic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app