Add like
Add dislike
Add to saved papers

Mixture of autoregressive modeling orders and its implication on single trial EEG classification.

Autoregressive (AR) models are of commonly utilized feature types in Electroencephalogram (EEG) studies due to offering better resolution, smoother spectra and being applicable to short segments of data. Identifying correct AR's modeling order is an open challenge. Lower model orders poorly represent the signal while higher orders increase noise. Conventional methods for estimating modeling order includes Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Final Prediction Error (FPE). This article assesses the hypothesis that appropriate mixture of multiple AR orders is likely to better represent the true signal compared to any single order. Better spectral representation of underlying EEG patterns can increase utility of AR features in Brain Computer Interface (BCI) systems by increasing timely & correctly responsiveness of such systems to operator's thoughts. Two mechanisms of Evolutionary-based fusion and Ensemble-based mixture are utilized for identifying such appropriate mixture of modeling orders. The classification performance of the resultant AR-mixtures are assessed against several conventional methods utilized by the community including 1) A well-known set of commonly used orders suggested by the literature, 2) conventional order estimation approaches (e.g., AIC, BIC and FPE), 3) blind mixture of AR features originated from a range of well-known orders. Five datasets from BCI competition III that contain 2, 3 and 4 motor imagery tasks are considered for the assessment. The results indicate superiority of Ensemble-based modeling order mixture and evolutionary-based order fusion methods within all datasets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app