Add like
Add dislike
Add to saved papers

PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling.

Nature Genetics 2017 September
The transcriptional network acting downstream of LIF, WNT and MAPK-ERK to stabilize mouse embryonic stem cells (ESCs) in their naive state has been extensively characterized. However, the upstream factors regulating these three signaling pathways remain largely uncharted. PR-domain-containing proteins (PRDMs) are zinc-finger sequence-specific chromatin factors that have essential roles in embryonic development and cell fate decisions. Here we characterize the transcriptional regulator PRDM15, which acts independently of PRDM14 to regulate the naive state of mouse ESCs. Mechanistically, PRDM15 modulates WNT and MAPK-ERK signaling by directly promoting the expression of Rspo1 (R-spondin1) and Spry1 (Sprouty1). Consistent with these findings, CRISPR-Cas9-mediated disruption of PRDM15-binding sites in the Rspo1 and Spry1 promoters recapitulates PRDM15 depletion, both in terms of local chromatin organization and the transcriptional modulation of these genes. Collectively, our findings uncover an essential role for PRDM15 as a chromatin factor that modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app