Add like
Add dislike
Add to saved papers

A receptor dependent-4D QSAR approach to predict the activity of mutated enzymes.

Scientific Reports 2017 July 25
Screening and selection tools to obtain focused libraries play a key role in successfully engineering enzymes of desired qualities. The quality of screening depends on efficient assays; however, a focused library generated with a priori information plays a major role in effectively identifying the right enzyme. As a proof of concept, for the first time, receptor dependent - 4D Quantitative Structure Activity Relationship (RD-4D-QSAR) has been implemented to predict kinetic properties of an enzyme. The novelty of this study is that the mutated enzymes also form a part of the training data set. The mutations were modeled in a serine protease and molecular dynamics simulations were conducted to derive enzyme-substrate (E-S) conformations. The E-S conformations were enclosed in a high resolution grid consisting of 156,250 grid points that stores interaction energies to generate QSAR models to predict the enzyme activity. The QSAR predictions showed similar results as reported in the kinetic studies with >80% specificity and >50% sensitivity revealing that the top ranked models unambiguously differentiated enzymes with high and low activity. The interaction energy descriptors of the best QSAR model were used to identify residues responsible for enzymatic activity and substrate specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app