Add like
Add dislike
Add to saved papers

Ultrahigh adsorption and singlet-oxygen mediated degradation for efficient synergetic removal of bisphenol A by a stable zirconium-porphyrin metal-organic framework.

Scientific Reports 2017 July 25
Bisphenol A (BPA), one of 23 most important endocrine disrupting chemicals, was efficiently removed and sequentially photodegraded by a zirconium-porphyrin metal-organic framework (MOF) catalyst under visible light for water treatment. Well control of photodegradation allows the kinetic separation of adsorption step and photodegradation step. Ultrahigh adsorption uptake of 487.69 ± 8.37 mg g(-1) is observed, while efficient photodegradation could be observed within 20 min at the rate of 0.004 mg min(-1). The synergetic effect boosts the photocatalytic efficiency and confirms that the catalysis happens inside the MOF pores other than in the solution phase. Furthermore, the mechanism was elucidated by diverse control experiments, such as in the conditions of (1)O2 scavenger, in darkness and with the changes of light sensitizing ligands. It confirmed that BPA was oxidized by the (1)O2 which was generated from porphyrin ligand within MOFs under visible-light. The excellent reusability and wide range of suitable pH range make the Zr-porphyrin MOFs practical for the photocatalytic water treatment processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app