Add like
Add dislike
Add to saved papers

Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models.

Scientific Reports 2017 July 25
In patients with type 1 diabetes mellitus (T1DM), glucose dynamics are influenced by insulin reactions, diet, lifestyle, etc., and characterized by instability and nonlinearity. With the objective of a dependable decision support system for T1DM self-management, we aim to model glucose dynamics using their nonlinear chaotic properties. A group of patients was monitored via continuous glucose monitoring (CGM) sensors for several days under free-living conditions. We assessed the glycemic variability (GV) and chaotic properties of each time series. Time series were subsequently transformed into the phase-space and individual autoregressive (AR) models were applied to predict glucose values over 30-minute and 60-minute prediction horizons (PH). The logistic smooth transition AR (LSTAR) model provided the best prediction accuracy for patients with high GV. For a PH of 30 minutes, the average values of root mean squared error (RMSE) and mean absolute error (MAE) for the LSTAR model in the case of patients in the hypoglycemia range were 5.83 ( ± 1.95) mg/dL and 5.18 ( ± 1.64) mg/dL, respectively. For a PH of 60 minutes, the average values of RMSE and MAE were 7.43 ( ± 1.87) mg/dL and 6.54 ( ± 1.6) mg/dL, respectively. Without the burden of measuring exogenous information, nonlinear regime-switching AR models provided fast and accurate results for glucose prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app