JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.

Metabolic Engineering 2017 September
Microbial production of 5-aminolevulinic acid (ALA) has received much attention because of its potential in clinical applications. Overexpression along with the deciphering of regulation of the related enzymes and an analogue transporter yielded remarkable achievements in ALA production. Nonetheless, there is significant room for carbon flux optimization to enhance ALA production. The aim of this study was precise carbon flux optimization for high ALA production in Escherichia coli expressing the ALA biosynthetic pathway. Initially, genes hemA and hemL were overexpressed with strong promoters and synthetic 5'-untranslated regions (5'-UTRs). Then, the tricarboxylic acid (TCA) cycle was blocked to force carbon flux toward the ALA production pathway by deletion of sucA. Although the resulting strain showed a severe metabolic imbalance and low ALA production, further precise tuning of carbon flux to the glyoxylate cycle by varying the transcriptional strength of aceA led to substantially improved cell growth and ALA production. Thus, this precise tuning of the glyoxylate cycle in a quantitative manner should also enable efficient production of other value-added products derived from the TCA cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app