Add like
Add dislike
Add to saved papers

Hydrostatic pressure and the experimental toxicology of marine fishes: The elephant in the room.

Marine Pollution Bulletin 2017 November 16
Hydrostatic pressure (HP) increases linearly with depth in aquatic environments, so that many fish species routinely experience moderate-to-high HP levels (i.e., from a few to dozens of MPa). Biological effects of this thermodynamic variable are evidenced by a reduced functionality of many biomolecular systems, even in barotolerant and barophilic species. It is likely that environmentally-relevant HP levels (i.e., above atmospheric) could also modulate the responsiveness to and toxic effects of pollutants in fish. Still, only a few laboratories have investigated this possibility. The already-published ecobarotoxicological studies have brought strong support to the notion that HP can indeed modulate pollutant response in shallow-water and deep-sea animals. A careful reassessment of toxicity responses is therefore required. To quantify the exact influence of HP in marine fish toxicology, a research framework is proposed that should ensure the collection of meaningful data for risk assessment, using standard toxicity testing and mechanistic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app