Add like
Add dislike
Add to saved papers

3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode.

Talanta 2017 November 2
3D binder-free CuO nanosheets wrapped nanofilms has been in situ synthesized on Cu substrate by a simple and facile procedure, with an aim of fabricating high-performance glucose sensor. The complex morphology that the nanosheet grown on Cu subtract evolved into nanofilms and eventually converged to nanowires, is benefit for the mass transport and electro-catalysis. Compared the ECSA of the CuO modified electrode to that of the bare Cu electrode, the effective surface area during the electro-catalysis of the CuO/Cu electrode is much larger. The glucose sensor based on CuO products exhibited high sensitivity (4201μAcm-2 mM-1 ), low detection limit (0.5μmol/L) and quick response time (0.7s). And the stability and selectivity is also fantastic. According to the serum sample analysis, it transpires that the CuO/Cu sensor displayed excellent recovery compared to the concentration values measured by medial method. So this material shows great potential applications in glucose sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app