Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of Amyotrophic Lateral Sclerosis on Slow Tonic Myofiber Composition in Human Extraocular Muscles.

Purpose: To analyze the proportion and cross-sectional area of myofibers containing myosin heavy chain slow-twitch (MyHCI) and myosin heavy chain slow tonic (MyHCsto) in extraocular muscles of autopsied amyotrophic lateral sclerosis (ALS) patients with either spinal or bulbar site of disease onset.

Methods: Whole-muscle cross sections from the middle portion of the medial rectus were labeled with antibodies against MyHCI or MyHCsto and laminin. Myofibers labeled with the MyHC antibodies (MyHCI+sto) and the total number of myofibers were quantified in the orbital and global layer of 6 control individuals and 18 ALS patients. The cross-sectional area of myofibers labeled for either MyHC was quantified in 130 to 472 fibers/individual in the orbital and in 180 to 573 fibers/individual in the global layer of each specimen.

Results: The proportion of MyHCI+sto myofibers was significantly smaller in the orbital and global layer of ALS compared to control individuals. MyHCI+sto myofibers were significantly smaller in the global layer than in the orbital layer of ALS, whereas they were of similar size in control subjects. The decreased proportion of MyHCI+sto fibers correlated significantly with the age of death, but not disease duration, in patients who had the bulbar-onset variant of ALS but not in patients with spinal variant.

Conclusions: ALS, regardless of site of onset, involves a loss of myofibers containing MyHCI+sto. Only in bulbar-onset cases did aging seem to play a role in the pathophysiological processes underlying the loss of MyHCI+sto fibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app