Add like
Add dislike
Add to saved papers

Impact of polymeric membrane breakage on drinking water quality and an online detection method of the breakage.

Polymeric membrane has been widely used for the treatment of drinking water in China, and the total treating capacity has reached up to 3.8 million m3 /d. However, the membrane breakage found in the membrane modules in many water treatment plants resulted in an increase in turbidity and bacterial amount in the membrane permeate. In this study, a membrane module running for 3 years in a full-scale application was examined in terms of the breaking positions and the numbers of the broken fibers. It was found that most of the breaking positions were mainly on the outlet side of the module and that the distance from these points to the outlet was about 1/10-2/10 length of the membrane module. The lab-scale tests showed that the increase of the numbers of the breaking fibers in the membrane module (the breaking fibers were from 1 to 4 of 75 fibers) resulted in the increase in turbidity, particle count and the amount of total bacteria and coliform bacteria. Meanwhile, the water quality after the filtration with broken membrane fibers was similar to the quality of the raw water, which indicated that once the membrane fiber breakage occurred in the membrane module, the quality of drinking water after membrane filtration was significantly affected. Furthermore, the breaking position closer to the outlet side of the membrane module exposed much higher microbiological risk than those in the middle or near the bottom side. A pilot scale test was conducted by using a membrane module with 6600 fibers, and the effect of the membrane breakage (1-4 broken fibers) on water quality was also investigated. The results indicated that periodical backwashing caused drastic fluctuation of turbidity, particle count and the bacterial amount in the permeate water, which might be due to the washing force and self-blocking action inside the hollow fibers. Moreover, there is a good quantitative relationship (R2 = 0.945) between particle count and the bacterial amount, which indicated that an online detection of particle count can be used to evaluate the bacterial risk. It was also suggested that the online detection of particle count after backwashing within 100 s would be a quick and precise method to identify any fiber breakage in time. These results are very important for the safety issue in the application of polymeric membrane to water treatment plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app