Add like
Add dislike
Add to saved papers

Overexpression of non‑SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma.

The non‑SMC condensin I complex subunit G (NCAPG) that organizes the coiling topology of individual chromatids, represents an overexpressed antigen in various types of cancer, and also contributes to restructuring chromatin into rod‑shaped mitotic chromosomes and ensuring the segregation of sister chromatid during cell division. In this study, we investigated the association between NCAPG expression and the biological behavior of hepatocellular carcinoma (HCC) to further explore the potential of NCAPG as a therapeutic target. The expression of NCAPG was detected in human HCC cell lines and tumor samples. The effects of NCAPG on the cell cycle, apoptosis and metastasis were investigated by various assays. NCAPG was found to be overexpressed in HCC compared with the adjacent normal tissue (P<0.001), and high levels of NCAPG expression were found to significantly correlate with recurrence, the time of recurrence, metastasis, differentiation and TNM stage. Furthermore, an elevated expression of NCAPG was associated with a poor overall survival (P<0.05). In addition, in vitro experiments further confirmed the ex vivo data; i.e., the knockdown of NCAPG expression reduced HCC cell viability, but induced apoptosis and arrested the cells at the S phase of the cell cycle. The knockdown of NCAPG expression also inhibited tumor cell migration and the cell invasive capacity in vitro. At the protein level, the knockdown of NCAPG expression upregulated Bax, cleaved caspase‑3 and E‑cadherin, but downregulated cyclin A1, CDK2, Bcl‑2, N‑cadherin and HOXB9 expression, suggesting that the knockdown of NCAPG expression suppressed tumor cell epithelial‑mesenchymal transition. On the whole, this study demonstrates that NCAPG plays an important role in the development and progression of HCC, and that it may be a novel therapeutic target for patients with HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app