Add like
Add dislike
Add to saved papers

Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo 6 S 8 cathode.

Hybrid density functional theory (DFT) is used to study the Chevrel phase Mo6 X8 (X = S, Se, Te) as a promising cathode material intercalated with various metal ions (M = Li, Na, Be, Mg, Ca, Sr, Ba, Zn, Al). Electronic properties and voltages are calculated for each case. Ca ions are predicted to produce a voltage output ranging from 1.8-2.1 V, comparable to the voltage calculated for Li ions while providing two electrons per transferred ion. The highest voltage is determined to result when the chalcogen X in Mo6 X8 is S, over Se or Te. Additionally, a comparison of the local-density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE), the Hubbard U corrected GGA-PBE (PBE+U), the meta-GGA modified Becke-Johnson (mBJ), and the hybrid Heyd-Scuseria-Ernzerhof (HSE) functionals are made. The electronic structure determined with HSE is taken as the most reliable, and PBE and LDA can provide reasonable approximations. The PBE+U approach yields an erroneous band gap and should be avoided. The voltages calculated with HSE are in excellent agreement with available experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app