Add like
Add dislike
Add to saved papers

Biphasic growth dynamics control cell division in Caulobacter crescentus.

Nature Microbiology 2017 July 25
Cell size is specific to each species and impacts cell function. Various phenomenological models for cell size regulation have been proposed, but recent work in bacteria has suggested an 'adder' model, in which a cell increments its size by a constant amount between each division. However, the coupling between cell size, shape and constriction remains poorly understood. Here, we investigate size control and the cell cycle dependence of bacterial growth using multigenerational cell growth and shape data for single Caulobacter crescentus cells. Our analysis reveals a biphasic mode of growth: a relative timer phase before constriction where cell growth is correlated to its initial size, followed by a pure adder phase during constriction. Cell wall labelling measurements reinforce this biphasic model, in which a crossover from uniform lateral growth to localized septal growth is observed. We present a mathematical model that quantitatively explains this biphasic 'mixer' model for cell size control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app