Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Renal Protection Mediated by Hypoxia Inducible Factor-1α Depends on Proangiogenesis Function of miR-21 by Targeting Thrombospondin 1.

Transplantation 2017 August
BACKGROUND: Angiogenesis contributes to the repair process after renal ischemia/reperfusion (I/R) injury. In the present study, we tested the role of miR-21 in the angiogenesis induced by hypoxia inducible factor (HIF)-1α through inhibiting a predicted target gene thrombospondin 1 (TSP-1).

METHODS: To stabilize HIF-1α, hypoxia (1% O2 for 24 hours) was performed in human umbilical vein endothelial cells and cobalt chloride (CoCl2) was pretreated intraperitoneally 24 hours before renal I/R in mice. Locked nucleic acid modified anti-miR-21 and scrambled control was transfected with hypoxic cells or delivered into the mice via tail vein 1 hour before CoCl2 injection. The kidneys and blood were collected at 24 hours after reperfusion.

RESULTS: HIF-1α induced by hypoxia and CoCl2 upregulated vascular endothelial growth factor and miR-21, and increased angiogenesis. It was found that expression of TSP-1 was inversely related with miR-21 in vitro and in vivo. Targeting of TSP-1 by miR-21 was further confirmed in vitro. Furthermore, HIF-1α improved renal function, accompanied with increased angiogenesis after I/R injury in mice. The protective effect of HIF-1α was attenuated by inhibition of miR-21.

CONCLUSIONS: HIF-1α induced angiogenesis by upregulating not only vascular endothelial growth factor but also miR-21 via inhibiting a novel target gene TSP-1. Both of them may contribute to the protective effect of HIF-1α on renal I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app