COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Integrin-targeted nano-sized polymeric systems for paclitaxel conjugation: a comparative study.

The generation of rationally designed polymer therapeutics via the conjugation of low molecular weight anti-cancer drugs to water-soluble polymeric nanocarriers aims to improve the therapeutic index. Here, we focus on applying polymer therapeutics to target two cell compartments simultaneously - tumour cells and angiogenic endothelial cells. Comparing different polymeric backbones carrying the same therapeutic agent and targeting moiety may shed light on any correlation between the choice of polymer and the anti-cancer activity of the conjugate. Here, we compared three paclitaxel (PTX)-bound conjugates with poly-l-glutamic acid (PGA, 4.9 mol%), 2-hydroxypropylmethacrylamide (HPMA, 1.2 mol%) copolymer, or polyethyleneglycol (PEG, 1:1 conjugate). PGA and HPMA copolymers are multivalent polymers that allow the conjugation of multiple compounds within the same polymer backbone, while PEG is a bivalent commercially available Food and Drug Administration (FDA)-approved polymer. We further conjugated PGA-PTX and PEG-PTX with the integrin αv β3 -targeting moiety RGD (5.5 mol% and 1:1 conjugate, respectively). We based our selection on the overexpression of integrin αv β3 on angiogenic endothelial cells and several types of cancer cells. Our findings suggest that the polymer structure has major effect on the conjugate's activity on different tumour compartments. A multivalent PGA-PTX-E-[c(RGDfK)2 ] conjugate displayed a stronger inhibitory effect on the endothelial compartment, showing a 50% inhibition of the migration of human umbilical vein endothelial cell cells, while a PTX-PEG-E-[c(RGDfK)2 ] conjugate possessed enhanced anti-cancer activity on MDA-MB-231 tumour cells (IC50  = 20 nM versus IC50 300 nM for the PGA conjugate).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app