Add like
Add dislike
Add to saved papers

Effect of dose and frequency of exposure to infectious stages on trematode infection intensity and success in mussels.

Marine parasites such as trematodes often compromise the fitness of their hosts. Such effects are generally considered to be density-dependent, i.e. the greater the infection intensity in the host, the greater the detrimental impact on host fitness. However, the mechanisms determining infection in marine hosts are still poorly understood. Here, we investigated the effect of cercarial dose and exposure frequency (single vs. trickle infections) of a marine trematode parasite, Himasthla elongata (Trematoda: Echinostomatidae), on infection intensity and success in its second intermediate host, the blue mussel Mytilus edulis, an abundant and widely distributed bivalve in European coastal waters. In our laboratory experiment, we tested 4 levels of parasite doses and showed that mussels faced higher parasite infection intensity at higher doses of cercarial exposure and that they acquired more infections when repeatedly exposed to smaller doses compared to a single high dose. However, the infection success of cercariae did not differ among 4 dose levels but was only significantly different between trickle and single exposures. This indicates that cercariae were not subjected to a dose-dependent regulation of their infectivity, suggesting that infection intensity in mussels is largely driven by factors mediating the abundance of infective stages. With the combined investigation of the effect of cercarial dose and exposure frequency at realistic dose levels, our study contributes to our currently very limited understanding of the determinants of infection intensity in marine hosts and highlights the usefulness of experimental studies in advancing our knowledge in this field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app