Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Modification of the Poly(bisdodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants.

Four p-type polymers were synthesized by modifying poly(bisdodecylquaterthiophene) (PQT12) to increase oxidizability by p-dopants. A sulfur atom is inserted between the thiophene rings and dodecyl chains, and/or 3,4-ethylenedioxy groups are appended to thiophene rings of PQT12. Doped with NOBF4, PQTS12 (with sulfur in side chains) shows a conductivity of 350 S cm-1 , the highest reported nonionic conductivity among films made from dopant-polymer solutions. Doped with tetrafluorotetracyanoquinodimethane (F4TCNQ), PDTDE12 (with 3,4-ethylenedioxy groups on thiophene rings) shows a conductivity of 140 S cm-1 . The converse combinations of polymer and dopant and formulations using a polymer with both the sulfur and ethylenedioxy modifications showed lower conductivities. The conductivities are stable in air without extrinsic ion contributions associated with PEDOT:PSS that cannot support sustained current or thermoelectric voltage. Efficient charge transfer, tighter π-π stacking, and strong intermolecular coupling are responsible for the conductivity. Values of nontransient Seebeck coefficient and conductivity agree with empirical modeling for materials with these levels of pure hole conductivity; the power factor compares favorably with prior p-type polymers made by the alternative process of immersion of polymer films into dopant solutions. Models and conductivities point to significant mobility increases induced by dopants on the order of 1-5 cm2 V-1 s-1 , supported by field-effect transistor studies of slightly doped samples. The thermal conductivities were in the range of 0.2-0.5 W m-1 K-1 , typical for conductive polymers. The results point to further enhancements that could be obtained by increasing doped polymer mobilities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app