JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Nationally representative equations that include resistance and reactance for the prediction of percent body fat in Americans.

BACKGROUND/OBJECTIVES: Resistance and reactance collected by bioelectrical impedance (BIA) can be used in equations to estimate percent body fat at relatively low cost and subject burden. To our knowledge, no such equations have been developed in a nationally representative sample.

SUBJECTS/METHODS: Dual-energy X-ray absorptiometry assessed percent body fat from the 1999 to 2004 National Health and Nutrition Survey was the criterion method for development of sex-specific percent body fat equations using up to 6467 males or 4888 females 8-49 years of age. Candidate variables were studied in multiple mathematical forms and interactions using the Least Absolute Shrinkage and Selection Operator. Models were fit in 2/3's of the data and validated in 1/3 of the data selected at random. Final coefficients, R2 values and root mean square error (RMSE) were estimated in the full data set.

RESULTS: Models that included age, ethnicity, height, weight, BMI and BIA assessments (resistance, reactance and height2 /resistance) had R2 values of 0.831 in men and 0.864 in women in the full data set. RMSE measurements were between 2 and 3 body fat percentage points, and all equations showed low bias across groups formed by age, race/ethnicity or body mass index category. The addition of triceps skinfold and waist circumference increased the R2 to 0.905 in males and 0.883 in females. Adding other anthropometrics (plus menses in females) had little impact on performance. Reactance and resistance alone (in multiple mathematical forms) performed poorly with R2 ~0.2.

CONCLUSIONS: Equations that included BIA assessments along with demographic and anthropometric variables provided percent body fat assessments that had high generalizability, strong predictive ability and low bias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app