Add like
Add dislike
Add to saved papers

Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells.

Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the impact and the underlying mechanism of BPA on the crosstalk between trophoblast and decidual stromal cells (DSCs), we determined whether BPA was able to affect trophoblast invasion in vitro. We found that BPA significantly inhibited CXCL8 expression in DSCs, which hindered trophoblast invasion, and activated the phosphorylation of ERK in DSCs. U0126, an inhibitor of ERK activation, remarkably rescued trophoblast invasion and the inhibition of CXCL8 expression caused by BPA treatment. Moreover, the nuclear estrogen receptor antagonist ICI 182,780 and transmembrane G protein-coupled receptor GPR30 (membrane estrogen receptor) antagonist G15 significantly blocked the phosphorylation of ERK and reversed the reduction of trophoblast invasion. In brief, BPA activated ERK through nuclear and membrane estrogen receptors and inhibited CXCL8 expression in DSCs, thereby affecting their regulation of trophoblast invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app