JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

From insulin synthesis to secretion: Alternative splicing of type 2 ryanodine receptor gene is essential for insulin secretion in pancreatic β cells.

Increases in the intracellular Ca2+ concentration in pancreatic islets, resulting from the Ca2+ mobilization from the intracellular source through the ryanodine receptor, are essential for insulin secretion by glucose. Cyclic ADP-ribose, a potent Ca2+ mobilizing second messenger synthesized from NAD+ by CD38, regulates the opening of ryanodine receptor. A novel ryanodine receptor mRNA (the islet-type ryanodine receptor) was found to be generated from the type 2 ryanodine receptor gene by the alternative splicing of exons 4 and 75. The islet-type ryanodine receptor mRNA is expressed in a variety of tissues such as pancreatic islets, cerebrum, cerebellum, and other neuro-endocrine cells, whereas the authentic type 2 ryanodine receptor mRNA (the heart-type ryanodine receptor) was found to be generated using GG/AG splicing of intron 75 and is expressed in the heart and the blood vessel. The islet-type ryanodine receptor caused a greater increase in the Ca2+ release by caffeine when expressed in HEK293 cells pre-treated with cyclic ADP-ribose, suggesting that the novel ryanodine receptor is an intracellular target for the CD38-cyclic ADP-ribose signal system in mammalian cells and that the tissue-specific alternative splicing of type 2 ryanodine receptor mRNA plays an important role in the functioning of the cyclic ADP-ribose-sensitive Ca2+ release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app