Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Binding of PmClipSP2 to microbial cell wall components and activation of the proPO-activating system in the black tiger shrimp Penaeus monodon.

Clip domain serine proteinases (ClipSPs) play an important role in the prophenoloxidase-activating (proPO) system. In the shrimp Penaeus monodon, the ClipSP PmClipSP2 has been previously shown to bind to microbial polysaccharides (LPS and β-1,3-glucan) and likely activates the proPO system. To reveal the binding site of the PmClipSP2 protein, the N-terminal clip domain (Clip-PmClipSP) and C-terminal SP domain (SP-PmClipSP2) were separately cloned. The recombinant proteins were then assayed for their binding properties and involvement in proPO activation. According to the ELISA-based binding assay, rSP-PmClipSP2, but not rClip-PmClipSP, can bind immobilized LPS and β-1,3-glucan as well as significantly activate PO activity. The binding site at the SP domain is proposed to have a pattern sequence (X-[PFY]-X-[AFILV]-[AFY]-[AITV]-X-[ILV]-X(5)-W-[IL]-X) that is located at the C-terminal region of the SP domain of PmClipSP2. Deletion of the pattern sequence abolished binding to LPS and β-1,3-glucan. Conversely, a recombinant protein containing the pattern sequence (rPT-PmClipSP2-TRX) had the ability to bind to cell wall components, confirming that the pattern sequence at the C-terminus of PmClipSP2 is responsible for binding to microbes, subsequently leading to activation of the proPO cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app