JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Versatile Tetrablock Copolymer Scaffold for Hierarchical Colloidal Nanoparticle Assemblies: Synthesis, Characterization, and Molecular Dynamics Simulation.

A unique combination of molecular dynamics (MD) simulation and detailed size exclusion chromatography-multiangle light scattering (SEC-MALS) analysis is used to provide important a priori insights into the solution self-assembly of a well-defined and symmetric tetrablock copolymer with two acrylic acid (AA) outer blocks, two polystyrene (PS) inner blocks, and a trithiocarbonate (TTC) central group, prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. SEC-MALS experiments show that the copolymer forms aggregates in both tetrahydrofuran and N,N-dimethylformamide (DMF), even in the presence of different salts, but not in 1,4-dioxane (dioxane). Combined with MD simulations, these results indicate that the AA units are the main cause of aggregation through intermolecular hydrogen bonding, with additional stabilization by the central TTC. The block copolymer chains self-assemble in dioxane by adding cadmium acetate, originating flowerlike inverse micelles with a cadmium acrylate core and the TTC groups in the outer surface of the PS corona. The micelles were used as nanoreactors in the templated synthesis of a single cadmium selenide (CdSe) quantum dot (QD) in the core of each micelle, whereas the shell TTC groups can be converted into thiol functions for further use of these units in hierarchical nanostructures. Only in dioxane where simulations and SEC-MALS suggest an absence of copolymer aggregates prior to cadmium acetate addition do well-dispersed and highly luminescent CdSe QDs form by templated synthesis. These results provide valuable insights into the self-assembly of RAFT copolymers in different solvent systems as it relates to the preparation of emissive QDs with polymer-spaced thiol functionality for binding to gold nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app