Add like
Add dislike
Add to saved papers

Long noncoding RNA expression profiles in chondrogenic and hypertrophic differentiation of mouse mesenchymal stem cells.

Long noncoding RNAs (lncRNAs) are important regulators for a variety of biological processes. Chondrogenic differentiation of mesenchymal stem cells (MSCs) is a crucial stage in chondrogenesis while chondrocyte hypertrophy is related to endochondral ossification and osteoarthritis. However, the effects of lncRNAs on chondrogenic and hypertrophic differentiation of mouse MSCs are unclear. To explore the potential mechanisms of lncRNAs during chondrogenesis and chondrocyte hypertrophy, microarray was performed to investigate the expression profiles of lncRNA and mRNA in MSCs, pre-chondrocytes, and hypertrophic chondrocytes. Then, we validated microarray data by RT-PCR and screened three lncRNAs from upregulating groups during chondrogenesis and chondrocyte hypertrophy respectively. After downregulating any of the above lncRNAs, we found that the expression of chondrogenesis-related genes such as Sox9 and Col2a1 and hypertrophy-related genes including Runx2 and Col10a1 was inhibited, respectively. Furthermore, the target genes of above lncRNAs were predicted by bioinformatics approaches. Gene ontology and Kyoto encyclopedia of genes and genome biological pathway analysis were also made to speculate the functions of above lncRNAs. In conclusion, the study first revealed the expression profile of lncRNAs in chondrogenic and hypertrophic differentiations of mouse MSCs and presented a new prospect for the underlying mechanisms of chondrogenesis and endochondral ossification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app