Add like
Add dislike
Add to saved papers

Seasonal performance of denitrifying bioreactors in the Northeastern United States: Field trials.

Denitrifying bioreactors are increasingly being used for nitrate removal from agricultural drainage water. Filled with carbon substrates, often woodchips, denitrifying bioreactors provide a favorable anaerobic environment for denitrification. Despite performing well in loess soils in the Midwestern United States, field bioreactors have not yet been evaluated in shallow soils over glacial till that are characteristic for the Northeastern United States. This study, therefore, investigates the performance of bioreactors and provides design criteria for shallow soil with flashy discharges. Paired bioreactors, one filled with woodchips and one with a mixture of woodchip and biochar, were installed in tile drained fields in three landscapes in New York State. The bioreactors were monitored for a three-year period during which, the flow rate, temperature, nitrate (NO3 - -N), sulfate (SO4 2- -S) and dissolved organic carbon (DOC) were measured. Results showed that the average NO3 - -N removal efficiency during the three years of observations was about 50%. The NO3 - -N removal rate ranged from 0 in winter to 72 g d-1 m-3 in summer. We found that biochar was only effective during the first year in enhancing denitrification, due to the ageing. An index for carbon availability related to NO3 - -N removal was developed. During winter, availability of the DOC was a limiting factor in bioreactor performance. Finally, to aid in the design of bioreactors, we developed generalizable relationships between the removal efficiency and hydraulic retention time and temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app